Analyzing IoT Malware

Emanuele Cozzi¹, Pierre-Antoine Vervier, Matteo Dell'Amico¹, Yun Shen², Leyla Bilge² and Davide Balzarotti¹
Based on the experimental work in our ACSAC 2020 paper: *The Tangled Genealogy of IoT Malware*

NortonLifeLock

Learning from Authoritative Security Experiment Results (LASER) 2020

IoT devices and malware

Submissions on VirusTotal

Community Score

1 40 engines detected this file

elf

da20e2642cb4d7fa3b99bf2cb88804b44ed48e16f3c68b7c3418208f0d532a10 9ad8473148e994981454b3b04370d1ec 132.96 KB Size 2019-10-07 23:29:39 UTC 1 year ago

DETECTION DETAILS	COMMUNITY 1		
Ad-Aware	Backdoor.Linux.Agent.AD	AegisLab	Trojan.Linux.Mirai.4!c
AhnLab-V3	① Linux/Mirai.Gen2	ALYac	Backdoor.Linux.Agent.AD
Antiy-AVL	① Trojan[Backdoor]/Linux.Mirai.b	Arcabit	Backdoor.Linux.Agent.AD
Avast	ELF:Mirai-A [Trj]	Avast-Mobile	ELF:Mirai-AJO [Trj]
AVG	① ELF:Mirai-A [Trj]	Avira (no cloud)	LINUX/Mirai.bonb
BitDefender	Backdoor.Linux.Agent.AD	CAT-QuickHeal	Trojan.Linux.loTReaper
ClamAV	① Unix.Trojan.IoTReaper-6355326-0	Comodo	Malware@#253dt8xqskql3
DrWeb	① Linux.lotReaper.7	Emsisoft	Backdoor.Linux.Agent.AD (B)
eScan	Backdoor.Linux.Agent.AD	ESET-NOD32	! Linux/lotreaper.D
F-Secure	Malware.LINUX/Mirai.bonb	FireEye	Backdoor.Linux.Agent.AD

Inter- and intra-family variety

Classification of variants

Our Dataset

- Goal: a comprehensive view of IoT malware
- Two conflicting goals
 - Have as many as possible
 - Avoid false positives
- We got all ELF binaries submitted to VirusTotal (Jan '15-Aug '18)
 - We excluded Android
 - We excluded x86/AMD64 binaries (to exclude desktop/servers)
 - Flagged malicious by at least 5 AV engines
- Result: 93.7k samples

First Approach: Feature-Based Clustering

Feature-Based Clustering

- Unsupervised method: we don't have a trusted ground truth
- We do have a **pseudo**-ground truth: AV engines' labels
 - Synthetised in AVClass (Sebastian et al. RAID '16)
 - One of our goals is evaluating it (and discovering classification mistakes)
- We go for clustering

Other ideas, when the "ground truth" isn't really reliable?

Features

- Extracted with Padawan (Cozzi et al., IEEE S&P '18)
- 7 categories (143 features in total):
 - **Bytes** (12): entropy, headers, footers, character frequencies
 - Elf (54): info obtained parsing the executable (e.g., anomalies, # of sections, stripped, ...)
 - **Strings** (3): IP addresses, paths & URLs found in the binary
 - Idapro (16): statistics obtained by disassembling (e.g., # of functions & basic blocks...)
 - **Behavior** (42): data collected from running in the sandbox
 - E.g., read & written files, # of syscalls, ...
 - **Dynamic** (3): errors, stderr, stdout
 - **Nettraffic** (13): network behavior (e.g., # of connections, IPs contacted, DNS activity...)

Processing the Features

• Numeric:

- $-x \rightarrow \log(1+x)$ to avoid large values dominating
- Divide by standard deviation (i.e., set stdev=1)

Categorical (sparse matrixes):

- One-hot encoding (a categorical feature with n values becomes n boolean features)
- Tf-idf normalization (i.e., lower the weight of frequent features)

Multi-sets (e.g., list of domans queried by DNS):

Sum of the categorical features

Paths:

Become multisets by taking full path, filename and all parent directories

Clustering Algorithm

Difficult dataset

- Very high-dimensional; we need sparse representation (due to one-hot encoding)
- Missing values (e.g., for cases where disassemble fails or no/trivial behavior)

• We use **FISHDBC**, an algorithm for **arbitrary (dis)similarity** functions

- Approximates HDBSCAN*, an algorithm of the density-based family (DBSCAN and friends)
- Uses HNSW, a data structure for approximated nearest neighbors in non-metric space
 - Scales in complex spaces because we don't compute all pairwise dissimilarities
- Ad-hoc "distance" function for our data:
 - Euclidean, for numeric features
 - Cosine, for categorical ones
 - We ignore "null" columns

Other options to deal with missing/insignificant values?

Validation

While we don't have a reliable ground truth, we do use AVClass as a pseudo-ground truth

- Our clustering should generally agree with AVClass labels
- We investigate (some) disagreements manually
- We check if our clustering can find AVClass misclassifications
- We turn on&off feature groups to verify which features are most useful
- We consider wheter samples end up in pure (all same AVClass label), single (one AVClass label+unknown), majority (90%+ one label) or mixed clusters
 - We also have unclustered samples in density-based approaches

"Brute force" analysis, by looking at which group of features makes most sense

Validation Results

- Binary-specific features (ELF, IDA Pro) are quite precise but they result in very narrow clusters
- Behavior-specific ones are very generic (same observed behavior)
- Through manual evaluation, we couldn't find mislabelings in AV engines

Feature groups					Clusters (# samples)				
ELF	IDA Pro	strings	behaviour	network	pure	single	majority	mixed	
✓					44,491	4,657	31,649	14,204	
	✓				3,677	45	316	1,082	
		✓			18,141	3,120	23,412	50,328	
			✓		27,889	1,097	5,726	60,289	
✓	✓	✓	1	✓	34,313	2,337	12,741	45,610	
✓	✓	✓	1		38,825	3,062	24,234	27,531	
✓	✓	✓			39,904	2,495	17,667	33,586	
✓	✓				42,427	2,587	34,118	14,520	
		✓	✓	✓	20,822	983	12,964	58,883	

Manual Analysis

- We went through a lot of manual analysis to understand in more detail what was happening
- Analyze cluster centroids & their most relevant features
- Get into more details about single samples

```
Cluster -1, 62,698 elements
25,973 gafgyt, 17,016 mirai, 9,487 None, 2,437 tsunami, 813 dofloo, 6972 others
Numeric centroid: entropy 6.05\pm0.95 [+0.19\sigma] max entropy 5.72\pm2.28 [+0.15\sigma] min entropy 4.36\pm2.38 [+0.21\sigma]
Top categorical features:
[0.13] 1.69±0.73 elf.link:static
[0.08] 0.63±0.93 elf.machine:ARM 32-bit
[0.06] 0.42±0.81 elf.machine:Intel 80386
[0.06] 0.54±0.50 elf.e phnum:3
[0.06] 0.85±0.36 bytes.unique bytes==256:True
Cluster 1141, 426 elements
372 asacub, 54 None
Numeric centroid: entropy 6.57±0.03 [+0.70σ] max entropy 6.85±0.05 [+0.58σ] min entropy 6.04±0.02 [+0.87σ]
Top categorical features:
[0.26] 2.00±0.00 elf.interpreter:<none>
[0.20] 2.00±0.00 elf.link:dynamic
[0.16] 1.00±0.00 elf.dynfuncs: ZN7 JNIEnv20CallStaticLongMethodEP7 jclassP10 jmethodIDz
 [0.16] 0.94±0.24 elf.dynfuncs:JNI OnLoad
[0.16] 2.00±0.00 elf.machine:ARM 32-bit
Cluster 131, 346 elements
Numeric centroid: entropy 4.15±0.00 [-1.69σ] max entropy -1.00±0.00 [-2.36σ] min entropy -1.00±0.00 [-1.88σ]
Top categorical features:
 [0.46] 2.00±0.00 elf.machine:Intel 80386
 [0.35] 1.00±0.00 elf.entrypoint:0x80486ce
 [0.35] 1.00±0.00 bytes.longest sequence.length:1849
[0.34] 1.00±0.00 elf.nsections:7
[0.34] 1.00±0.00 elf.e shnum:7
Cluster 3471, 334 elements
235 gafgyt, 98 tsunami, 1 hydra
Numeric centroid: entropy 5.62\pm0.09 [-0.24\sigma] max entropy 6.10\pm0.16 [+0.30\sigma] min entropy 1.30\pm0.85 [-0.98\sigma]
Top categorical features:
[0.43] 1.00±0.00 bytes.longest sequence.length:16356
 [0.36] 0.99±0.12 bytes.footer:005f5f47495f7864725f73686f727400
 [0.34] 2.00±0.00 elf.machine:ARM 32-bit
[0.27] 1.00±0.00 elf.nsections:20
[0.26] 1.00±0.00 elf.entrypoint:0x8190
Cluster 3366, 325 elements
325 gafgyt
Numeric centroid: entropy 6.30±0.00 [+0.44σ] max entropy 6.41±0.00 [+0.42σ] min entropy 5.08±0.00 [+0.49σ]
Top categorical features:
                                            The "-1" cluster is "noise":
[0.45] 2.00±0.00 elf.machine:Intel 80386
[0.43] 1.00±0.00 elf.entrypoint:0x8048168
                                            elements that are actually not
[0.35] 1.00±0.00 elf.nsections:16
[0.34] 1.00±0.00 elf.e shnum:16
                                            clustered with anything else
[0.28] 1.00±0.00 bytes.longest sequence.le
```

A First Failure

- Our interpretation was that the features we've been collecting were simply not powerful enough for our final goal
- We do find signal, but it's not the signal we were looking for
 - We end up clustering by architecture, details of the binaries, ...
- We need to restart from scratch with an approach that better reflects commonality in code

Happy Ending: Bindiff-Based Clustering

Code Doesn't Lie: Using Bindiff

- Current IoT malware is not very sophisticated, and it lends itself well to decompilation in most cases
- We use the Diaphora diffing tool, which takes two binaries and outputs similarity scores between functions
 - Open source & easy to customize for us
- Dissimilarity score: 1 / (# of function pairs with similarity at least 0.5)
 - We experimented with several approaches, this proved to be the most reliable one
- At first, we only consider dinamically-linked & unstripped binaries
 - Similiarity in libraries could would drive us astray, we remove libraries from unstripped files

Deconstructing the Clustering Algorithm

- The FISHDBC algorithm we used is based on
 - HNSW for search in complex & non-metric spaces
 - A generalized spanning tree based on distances between items
 - A procedure to build clusters on top the spanning tree
- We've found that the spanning tree itself carries most of the information we were looking for
- We just use HNSW and the spanning tree

For us, not treating ML as a "black box" algorithm helped

Extracting Library Code

- We want to make our approach work on files that are both statically linked and stripped
- We need to detect library code
- We piggyback on binary diffing itself: we use the HNSW to query for similar unstripped files
- When known library functions match others, we mark those (and the following in the file) as library code; we ignore it afterwards

Results

- This new approach, this time, got us results that satisfied us
- Through manual analysis, we were able to **confirm** our spanning tree was a very good representation of the lineage between samples
- We were able to identify errors in AV labels

Code reuse

Variants

Discussion

Outside the Box of Feature Extraction

We've seen that

- The standard approach of extracting numeric/categorical features wasn't powerful enough for us
- In our case, an almost-out-of-the-box similarity function got us the results we were looking for

This is not a special case

- For strings: edit distance
- For files: fuzzy hashes
- Deep neural networks for binary files: similarity is more precise than embedding (Li et al. ICML'19)

Could Our Work Use a Classical Approach?

- Many of the Diaphora heuristics test for equality of various characteristics
- We can't exclude that carefully using those features would have worked
- However, that would have
 - Required a lot of work (re-implementing Diaphora's algorithms)
 - Lost compatibility with future improvements/other approaches (e.g., deep neural networks)
 - Lost agility (e.g., ad-hoc code to handle specific cases)

Conclusions & Open Questions

- The goal of our study is to get a comprehensive panorama of IoT malware
- Current low sophistication enabled a largely automated approach
 - Will this be possible in the future? Will this research question always remain open?
- "Traditional" feature-based approaches didn't work for us
 - How widespread is this issue?
- Engineering a system based on ad-hoc similarity functions solved the problem
 - We believe it's an agile approach that we're finding effective in various areas of security
- We're putting data on https://github.com/eurecom-s3/tangled_iot