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IoT devices and malware
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Submissions on VirusTotal
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Inter- and intra-family variety
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Classification of variants
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Our Dataset
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● Goal: a comprehensive view of IoT malware

● Two conflicting goals
– Have as many as possible

– Avoid false positives

● We got all ELF binaries submitted to VirusTotal (Jan ’15-Aug ’18)
– We excluded Android

– We excluded x86/AMD64 binaries (to exclude desktop/servers)

– Flagged malicious by at least 5 AV engines

● Result: 93.7k samples



First Approach: Feature-Based Clustering
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Feature-Based Clustering
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● Unsupervised method: we don’t have a trusted ground truth

● We do have a pseudo-ground truth: AV engines’ labels
– Synthetised in AVClass (Sebastian et al. RAID ‘16)

– One of our goals is evaluating it (and discovering classification mistakes)

● We go for clustering

Other ideas, when the “ground 
truth” isn’t really reliable?

Other ideas, when the “ground 
truth” isn’t really reliable?



Features
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● Extracted with Padawan (Cozzi et al., IEEE S&P ‘18)

● 7 categories (143 features in total):
– Bytes (12): entropy, headers, footers, character frequencies

– Elf (54): info obtained parsing the executable (e.g., anomalies, # of sections, stripped, ...)

– Strings (3): IP addresses, paths & URLs found in the binary

– Idapro (16): statistics obtained by disassembling (e.g., # of functions & basic blocks...)

– Behavior (42): data collected from running in the sandbox
● E.g., read & written files, # of syscalls, ...

– Dynamic (3): errors, stderr, stdout

– Nettraffic (13): network behavior (e.g., # of connections, IPs contacted, DNS activity...)



Processing the Features
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● Numeric:
– x → log(1 + x) to avoid large values dominating

– Divide by standard deviation (i.e., set stdev=1)

● Categorical (sparse matrixes):
– One-hot encoding (a categorical feature with n values becomes n boolean features)

– Tf-idf normalization (i.e., lower the weight of frequent features)

● Multi-sets (e.g., list of domans queried by DNS):
– Sum of the categorical features

● Paths:
– Become multisets by taking full path, filename and all parent directories



Clustering Algorithm
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● Difficult dataset
– Very high-dimensional; we need sparse representation (due to one-hot encoding)

– Missing values (e.g., for cases where disassemble fails or no/trivial behavior)

● We use FISHDBC, an algorithm for arbitrary (dis)similarity functions
– Approximates HDBSCAN*, an algorithm of the density-based family (DBSCAN and friends)

– Uses HNSW, a data structure for approximated nearest neighbors in non-metric space
● Scales in complex spaces because we don’t compute all pairwise dissimilarities

– Ad-hoc “distance” function for our data:
● Euclidean, for numeric features

● Cosine, for categorical ones

● We ignore “null” columns

Other options to deal with 
missing/insignificant values?

Other options to deal with 
missing/insignificant values?



Validation
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● While we don’t have a reliable ground truth, we do use AVClass as a 
pseudo-ground truth
– Our clustering should generally agree with AVClass labels

– We investigate (some) disagreements manually

– We check if our clustering can find AVClass misclassifications

● We turn on&off feature groups to verify which features are most 
useful

● We consider wheter samples end up in pure (all same AVClass label), 
single (one AVClass label+unknown), majority (90%+ one label) or 
mixed clusters
– We also have unclustered samples in density-based approaches

“Brute force” analysis, by looking 
at which group of features makes 
most sense

“Brute force” analysis, by looking 
at which group of features makes 
most sense



Validation Results
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● Binary-specific features (ELF, 
IDA Pro) are quite precise but 
they result in very narrow 
clusters

● Behavior-specific ones are very 
generic (same observed 
behavior)

● Through manual evaluation, 
we couldn’t find mislabelings 
in AV engines



Manual Analysis
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● We went through a lot of 
manual analysis to understand 
in more detail what was 
happening

● Analyze cluster centroids & 
their most relevant features

● Get into more details about 
single samples

The “-1” cluster is “noise”: 
elements that are actually not 
clustered with anything else

The “-1” cluster is “noise”: 
elements that are actually not 
clustered with anything else



A First Failure
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● Our interpretation was that the features we’ve been collecting were 
simply not powerful enough for our final goal

● We do find signal, but it’s not the signal we were looking for
– We end up clustering by architecture, details of the binaries, …

● We need to restart from scratch with an approach that better 
reflects commonality in code



Happy Ending: Bindiff-Based Clustering
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Code Doesn’t Lie: Using Bindiff
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● Current IoT malware is not very sophisticated, and it lends itself well 
to decompilation in most cases

● We use the Diaphora diffing tool, which takes two binaries and 
outputs similarity scores between functions
– Open source & easy to customize for us

● Dissimilarity score: 1 / (# of function pairs with similarity at least 0.5)
– We experimented with several approaches, this proved to be the most reliable one

● At first, we only consider dinamically-linked & unstripped binaries
– Similiarity in libraries could would drive us astray, we remove libraries from unstripped files



Deconstructing the Clustering Algorithm
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● The FISHDBC algorithm we used is based on
– HNSW for search in complex & non-metric spaces

– A generalized spanning tree based on distances between items

– A procedure to build clusters on top the spanning tree

● We’ve found that the spanning tree itself carries most of the 
information we were looking for

● We just use HNSW and the spanning tree For us, not treating ML as a 
“black box” algorithm helped

For us, not treating ML as a 
“black box” algorithm helped



Extracting Library Code
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● We want to make our approach work on files that are both statically 
linked and stripped

● We need to detect library code

● We piggyback on binary diffing itself: we use the HNSW to query for 
similar unstripped files

● When known library functions match others, we mark those (and 
the following in the file) as library code; we ignore it afterwards



Results

Analyzing IoT Malware, LASER 2020 21

● This new approach, this time, got us results that satisfied us

● Through manual analysis, we were able to confirm our spanning tree 
was a very good representation of the lineage between samples

● We were able to identify errors in AV labels



Code reuse
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Variants

Analyzing IoT Malware, LASER 2020 23

kstd

ca
ps

ai
ci

n

zbot

amnesia



Discussion
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Outside the Box of Feature Extraction
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● We’ve seen that 
– The standard approach of extracting numeric/categorical features wasn’t powerful enough 

for us

– In our case, an almost-out-of-the-box similarity function got us the results we were looking 
for

● This is not a special case
– For strings: edit distance

– For files: fuzzy hashes

– Deep neural networks for binary files: similarity is more precise than embedding (Li et al. 
ICML’19)



Could Our Work Use a Classical Approach?
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● Many of the Diaphora heuristics test for equality of various 
characteristics

● We can’t exclude that carefully using those features would have 
worked

● However, that would have
– Required a lot of work (re-implementing Diaphora’s algorithms)

– Lost compatibility with future improvements/other approaches (e.g., deep neural 
networks)

– Lost agility (e.g., ad-hoc code to handle specific cases)



Conclusions & Open Questions
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● The goal of our study is to get a comprehensive panorama of IoT 
malware

● Current low sophistication enabled a largely automated approach
– Will this be possible in the future? Will this research question always remain open?

● “Traditional” feature-based approaches didn’t work for us
– How widespread is this issue?

● Engineering a system based on ad-hoc similarity functions solved the 
problem
– We believe it’s an agile approach that we’re finding effective in various areas of security

● We’re putting data on https://github.com/eurecom-s3/tangled_iot

https://github.com/eurecom-s3/tangled_iot
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