
Analyzing IoT Malware
Emanuele Cozzi1, Pierre-Antoine Vervier, Matteo Dell’Amico1, Yun Shen2, Leyla Bilge2 and Davide Balzarotti1

Based on the experimental work in our ACSAC 2020 paper: The Tangled Genealogy of IoT Malware

EURECOM NortonLifeLock

Learning from Authoritative Security Experiment Results (LASER) 2020
Analyzing IoT Malware, Laser 2020 1

IoT devices and malware

Analyzing IoT Malware, LASER 2020 2

Submissions on VirusTotal

Analyzing IoT Malware, LASER 2020 3

Analyzing IoT Malware, LASER 2020 4

?

Inter- and intra-family variety

Analyzing IoT Malware, LASER 2020 5

A

B

A1

BA1
C

CBA1

Classification of variants

Analyzing IoT Malware, LASER 2020 6

A

B

A1

BA1
C

CBA1

Our Dataset

Analyzing IoT Malware, LASER 2020 7

● Goal: a comprehensive view of IoT malware

● Two conflicting goals
– Have as many as possible

– Avoid false positives

● We got all ELF binaries submitted to VirusTotal (Jan ’15-Aug ’18)
– We excluded Android

– We excluded x86/AMD64 binaries (to exclude desktop/servers)

– Flagged malicious by at least 5 AV engines

● Result: 93.7k samples

First Approach: Feature-Based Clustering

Analyzing IoT Malware, LASER 2020 8

Feature-Based Clustering

Analyzing IoT Malware, LASER 2020 9

● Unsupervised method: we don’t have a trusted ground truth

● We do have a pseudo-ground truth: AV engines’ labels
– Synthetised in AVClass (Sebastian et al. RAID ‘16)

– One of our goals is evaluating it (and discovering classification mistakes)

● We go for clustering

Other ideas, when the “ground
truth” isn’t really reliable?

Other ideas, when the “ground
truth” isn’t really reliable?

Features

Analyzing IoT Malware, LASER 2020 10

● Extracted with Padawan (Cozzi et al., IEEE S&P ‘18)

● 7 categories (143 features in total):
– Bytes (12): entropy, headers, footers, character frequencies

– Elf (54): info obtained parsing the executable (e.g., anomalies, # of sections, stripped, ...)

– Strings (3): IP addresses, paths & URLs found in the binary

– Idapro (16): statistics obtained by disassembling (e.g., # of functions & basic blocks...)

– Behavior (42): data collected from running in the sandbox
● E.g., read & written files, # of syscalls, ...

– Dynamic (3): errors, stderr, stdout

– Nettraffic (13): network behavior (e.g., # of connections, IPs contacted, DNS activity...)

Processing the Features

Analyzing IoT Malware, LASER 2020 11

● Numeric:
– x → log(1 + x) to avoid large values dominating

– Divide by standard deviation (i.e., set stdev=1)

● Categorical (sparse matrixes):
– One-hot encoding (a categorical feature with n values becomes n boolean features)

– Tf-idf normalization (i.e., lower the weight of frequent features)

● Multi-sets (e.g., list of domans queried by DNS):
– Sum of the categorical features

● Paths:
– Become multisets by taking full path, filename and all parent directories

Clustering Algorithm

Analyzing IoT Malware, LASER 2020 12

● Difficult dataset
– Very high-dimensional; we need sparse representation (due to one-hot encoding)

– Missing values (e.g., for cases where disassemble fails or no/trivial behavior)

● We use FISHDBC, an algorithm for arbitrary (dis)similarity functions
– Approximates HDBSCAN*, an algorithm of the density-based family (DBSCAN and friends)

– Uses HNSW, a data structure for approximated nearest neighbors in non-metric space
● Scales in complex spaces because we don’t compute all pairwise dissimilarities

– Ad-hoc “distance” function for our data:
● Euclidean, for numeric features

● Cosine, for categorical ones

● We ignore “null” columns

Other options to deal with
missing/insignificant values?

Other options to deal with
missing/insignificant values?

Validation

Analyzing IoT Malware, LASER 2020 13

● While we don’t have a reliable ground truth, we do use AVClass as a
pseudo-ground truth
– Our clustering should generally agree with AVClass labels

– We investigate (some) disagreements manually

– We check if our clustering can find AVClass misclassifications

● We turn on&off feature groups to verify which features are most
useful

● We consider wheter samples end up in pure (all same AVClass label),
single (one AVClass label+unknown), majority (90%+ one label) or
mixed clusters
– We also have unclustered samples in density-based approaches

“Brute force” analysis, by looking
at which group of features makes
most sense

“Brute force” analysis, by looking
at which group of features makes
most sense

Validation Results

Analyzing IoT Malware, LASER 2020 14

● Binary-specific features (ELF,
IDA Pro) are quite precise but
they result in very narrow
clusters

● Behavior-specific ones are very
generic (same observed
behavior)

● Through manual evaluation,
we couldn’t find mislabelings
in AV engines

Manual Analysis

Analyzing IoT Malware, LASER 2020 15

● We went through a lot of
manual analysis to understand
in more detail what was
happening

● Analyze cluster centroids &
their most relevant features

● Get into more details about
single samples

The “-1” cluster is “noise”:
elements that are actually not
clustered with anything else

The “-1” cluster is “noise”:
elements that are actually not
clustered with anything else

A First Failure

Analyzing IoT Malware, LASER 2020 16

● Our interpretation was that the features we’ve been collecting were
simply not powerful enough for our final goal

● We do find signal, but it’s not the signal we were looking for
– We end up clustering by architecture, details of the binaries, …

● We need to restart from scratch with an approach that better
reflects commonality in code

Happy Ending: Bindiff-Based Clustering

Analyzing IoT Malware, LASER 2020 17

Code Doesn’t Lie: Using Bindiff

Analyzing IoT Malware, LASER 2020 18

● Current IoT malware is not very sophisticated, and it lends itself well
to decompilation in most cases

● We use the Diaphora diffing tool, which takes two binaries and
outputs similarity scores between functions
– Open source & easy to customize for us

● Dissimilarity score: 1 / (# of function pairs with similarity at least 0.5)
– We experimented with several approaches, this proved to be the most reliable one

● At first, we only consider dinamically-linked & unstripped binaries
– Similiarity in libraries could would drive us astray, we remove libraries from unstripped files

Deconstructing the Clustering Algorithm

Analyzing IoT Malware, LASER 2020 19

● The FISHDBC algorithm we used is based on
– HNSW for search in complex & non-metric spaces

– A generalized spanning tree based on distances between items

– A procedure to build clusters on top the spanning tree

● We’ve found that the spanning tree itself carries most of the
information we were looking for

● We just use HNSW and the spanning tree For us, not treating ML as a
“black box” algorithm helped

For us, not treating ML as a
“black box” algorithm helped

Extracting Library Code

Analyzing IoT Malware, LASER 2020 20

● We want to make our approach work on files that are both statically
linked and stripped

● We need to detect library code

● We piggyback on binary diffing itself: we use the HNSW to query for
similar unstripped files

● When known library functions match others, we mark those (and
the following in the file) as library code; we ignore it afterwards

Results

Analyzing IoT Malware, LASER 2020 21

● This new approach, this time, got us results that satisfied us

● Through manual analysis, we were able to confirm our spanning tree
was a very good representation of the lineage between samples

● We were able to identify errors in AV labels

Code reuse

Analyzing IoT Malware, LASER 2020 22

A
B

Variants

Analyzing IoT Malware, LASER 2020 23

kstd

ca
ps

ai
ci

n

zbot

amnesia

Discussion

Analyzing IoT Malware, LASER 2020 24

Outside the Box of Feature Extraction

Analyzing IoT Malware, LASER 2020 25

● We’ve seen that
– The standard approach of extracting numeric/categorical features wasn’t powerful enough

for us

– In our case, an almost-out-of-the-box similarity function got us the results we were looking
for

● This is not a special case
– For strings: edit distance

– For files: fuzzy hashes

– Deep neural networks for binary files: similarity is more precise than embedding (Li et al.
ICML’19)

Could Our Work Use a Classical Approach?

Analyzing IoT Malware, LASER 2020 26

● Many of the Diaphora heuristics test for equality of various
characteristics

● We can’t exclude that carefully using those features would have
worked

● However, that would have
– Required a lot of work (re-implementing Diaphora’s algorithms)

– Lost compatibility with future improvements/other approaches (e.g., deep neural
networks)

– Lost agility (e.g., ad-hoc code to handle specific cases)

Conclusions & Open Questions

Analyzing IoT Malware, LASER 2020 27

● The goal of our study is to get a comprehensive panorama of IoT
malware

● Current low sophistication enabled a largely automated approach
– Will this be possible in the future? Will this research question always remain open?

● “Traditional” feature-based approaches didn’t work for us
– How widespread is this issue?

● Engineering a system based on ad-hoc similarity functions solved the
problem
– We believe it’s an agile approach that we’re finding effective in various areas of security

● We’re putting data on https://github.com/eurecom-s3/tangled_iot

https://github.com/eurecom-s3/tangled_iot

	Diapositiva 1
	IoT devices and malware
	Submissions on VirusTotal
	Diapositiva 4
	Inter- and intra-family variety
	Classification of variants
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Code reuse
	Variants
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27

