

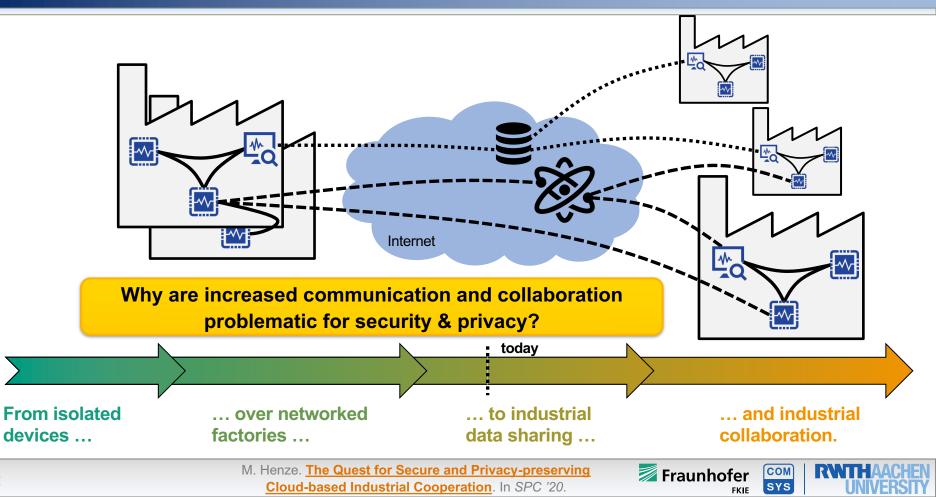
A Process Cycle View on Utilizing Security and Privacy Research to Realize Novel Forms of Industrial Applications and Collaboration *Collaboration is not Evil:*

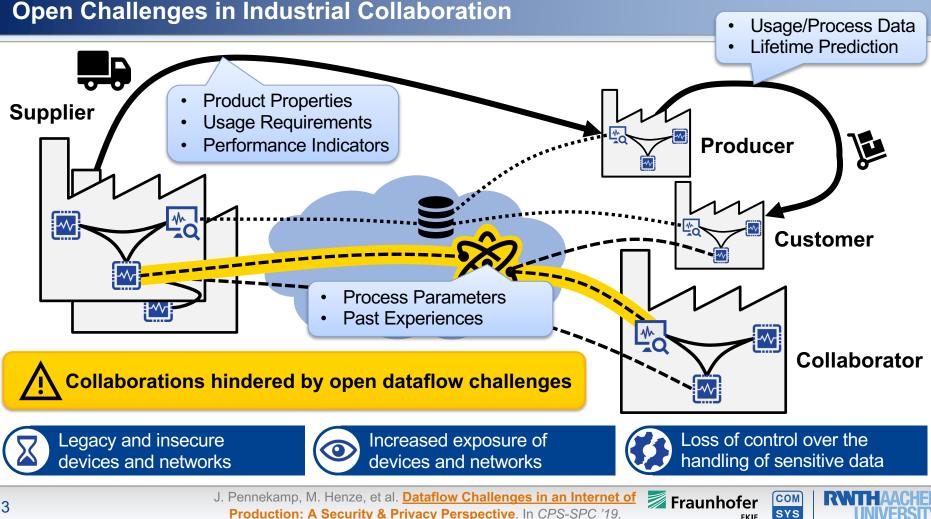
Our journey in security research for industrial use

Fraunhofer

COM

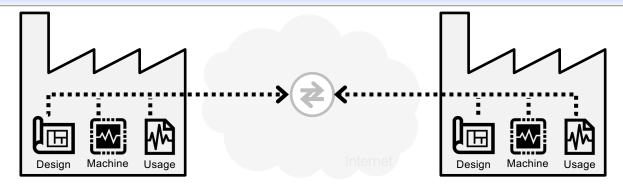
FKIE


Jan Pennekamp, Martin Henze


pennekamp@comsys.rwth-aachen.de martin.henze@fkie.fraunhofer.de

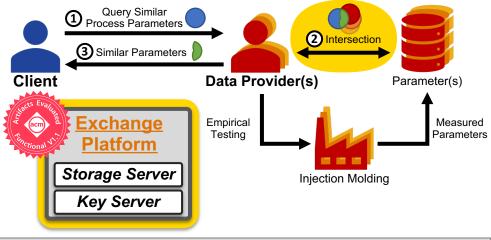
https://www.comsys.rwth-aachen.de/

"Austin" / LASER Workshop, 8th December 2020


Moving from Industrial Communication to Collaboration

SYS FKIE

ACSAC 2020: Privacy-Preserving Production Process Parameter Exchange



- Isolated knowledge
- Currently no privacypreserving access
 - Concerns about data leaks, loss of control, ...

- Real-world applicable privacypreserving parameter exchange
 - Developed with industry needs in mind
 - Scalable & universal as demonstrated with two real-world use cases

Thursday, Session 4B:

Distributed Systems and Cloud Security

СОМ

SYS

IKV • INSTITUTE FOR PLASTICS PROCESSING IN INDUSTRY AND CRAFT AT RWTH AACHEN UNIVER

J. Pennekamp, E. Buchholz, Y. Lockner, et al. <u>Privacy-Preserving</u> <u>Production Process Parameter Exchange</u>. In ACSAC '20.

Parameter Exchange

ACSAC 2020 (evaluated using two use cases)

Supply Chain Privacy

BIOTCPS 2020 (evaluated using a fine blanking line)

under submission: with a manufacturer of electric vehicles

Industrial Security Measurements

IMC 2020 (including responsible disclosure)

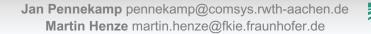
Company Benchmarking

5

WAHC 2020 (with a real-world benchmark in injection molding)

In-Network Processing Application

under submission: improving a large-scale metrology application



Interdisciplinary Research Cluster

30+ institutes (200 scientists) from various domains (mechanical engineering, material science, ...)

External Use Case	
Identify Use Case	Do not hesitate to interrupt us with questions or comments
Bootstrapping	

COM SYS RWH

A External opportunity

- Get approached by a practitioner
- Might be a rare situation
 - Today's security possibilities are unclear
 - Conservative companies lack visions

BIdentify a research gap yourself

- Challenging without domain knowledge
- Idea identified through related work
 - No guarantee to match industry needs

Takeaway:

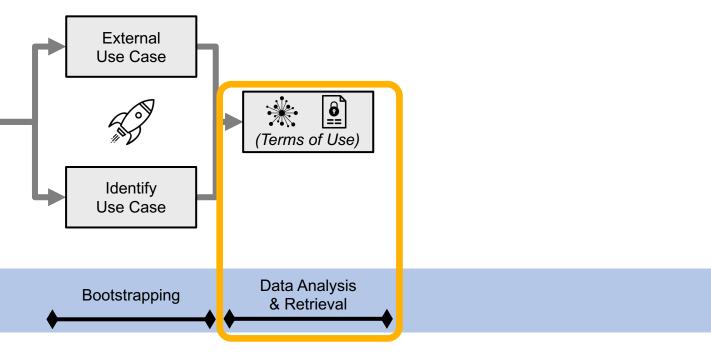
- Identifying use cases is not trivial
 - Requires some domain knowledge
 - Researcher and practitioners might not share/understand realistic visions

• Do your homework!

Look for suitable existing solutions

Fraunhofer

Identify similar use cases


We were approached by an injection molding practitioner and identified a 2^{nd} use case (machine tools) later.

сом

SYS

ACSAC

Jan Pennekamp pennekamp@comsys.rwth-aachen.de Martin Henze martin.henze@fkie.fraunhofer.de

• Understand what's relevant

- Practitioners might not know either
- Be prepared for no documentation
- Translate (received) information
 - Might be available in Excel only ③
 - The first glance might be misleading

0	. `
# Scaled data pickled with Python 3.7.	
<pre>import pickle test = pickle.load(open('Data_w_g.pkl', 'rb'))</pre>	
test = pickle.load(open(butte_w_g)	
{"1x1 Original":{"x":[[101.0567, 173.0, 226.0, 26.0, 4.9, 18.3], [200.0567	7.
173.0, 226.0, 26.0, 4.9, 18.3], [101.0567, 527.0, 226.0, 26.0, 4.9, 18.3],	
[200.0567, 527.0, 226.0, 26.0, 4.9, 18.3], [101.0567, 173.0, 254.0, 26.0,	4.9,
18.3], [200.0567, 173.0, 254.0, 26.0, 4.9, 18.3], [101.0567, 527.0, 254.0,	
26.0, 4.9, 18.3], [200.0567, 527.0, 254.0, 26.0, 4.9, 18.3], [101.0567, 17	3.0,
226.0, 54.0, 4.9, 18.3], [200.0567, 173.0, 226.0, 54.0, 4.9, 18.3], [101.0	567,
527.0, 226.0, 54.0, 4.9, 18.3], [200.0567, 527.0, 226.0, 54.0, 4.9, 18.3],	
[101.0567, 173.0, 254.0, 54.0, 4.9, 18.3], [200.0567, 173.0, 254.0, 54.0,	4.9,

18.3], [101.0567, 527.0, 254.0, 54.0, 4.9, 18.3], [200.0567, 527.0, 254.0, 54.0, 4.9, 18.3], [101.0567, 173.0, 226.0, 26.0, 14.1, 18.3], [200.0567, 173.0 226.0, 26.0, 14.1, 18.3], [101.0567, 527.0, 226.0, 26.0, 14.1, 18.3], [200.0567, 527.0, 226.0, 26.0, 14.1, 18.3], [101.0567, 173.0, 224.0, 26.0,

	A	В	с	D
1	Name	(unique!)	1x1_Brick	1x2_Brick
2	Characteristic	(unique!)		
3	Length	[mm]	30	30
4	Width	[mm]	30	60
5	Height	[mm]	59	59
6	Volume	[mm ³]	12,496,949	21,866,305
7	Shot Volume	[mm ³]	12,496,949	21,866,305
8	Average Wall Thickness	[mm]	1,962,849,116	1,968,220,603
9	Max Wall Thickness	[mm]	2	4
10	Min Wall Thickness	[mm]	2	2
11	Flow Distance	[mm]	56,4	61,4

Takeaway:

- Identifying & getting data is hard
 - Is it even available/accessible?
 - Are we permitted to use it?
 - What kind of processing is needed?
- Thoroughly discuss the use case data and its semantics
 - A correct understanding is key!
 - Any impact on productive systems?
- Apply the required pre-processing

COM

SYS

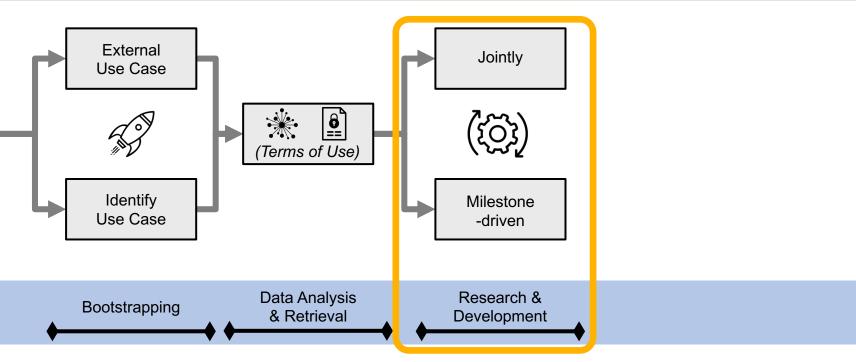
Recap: Companies might be conservative

- Data is valuable (overall) and sensitive at the same time!
- Initial meetings are usually enthusiastic
 - However: A non-disclosure agreement might be needed

Time-consuming process

- Stakeholders can have different goals The Bad
 - Possibly with impact on the publication
 - Mandatory (lengthy) approval processes
 - Might prevent to publish (negative) findings
 - Legal matters can also affect later dissemination or open-sourcing

- You have a use case to work on 🙂
- You get access to usually "secret" data


COM

SYS

FKIE

COM SYS

 \mathbf{R}

A Joint feedback loop in place

- Agile process extremely helpful
 - Correct still existing misconceptions
 - Ability to demonstrate increments

B Present milestones only

- In our case a finished prototype
- Risk of solving the wrong "problem"
- Tiresome to get evaluation data
 - Artificial examples cannot make up for real-world use case data
 BIOTCPS

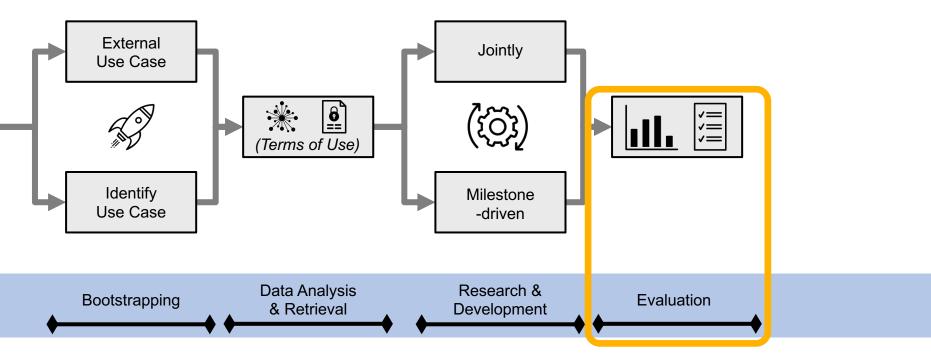
Takeaway:

- A feedback loop is very beneficial
 - Allows to fix mistakes in time
 - Practitioners feel more integrated, fewer risks of dissatisfaction

Scalability needs can be unclear

Future developments still uncertain

A well-communicated development cycle for both sides, with the opportunity to still steer the process.


COM

SYS

ACSAC

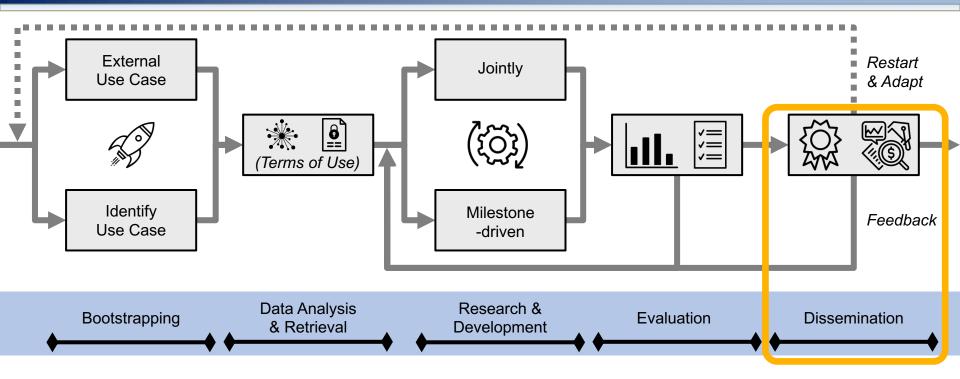
COM SYS

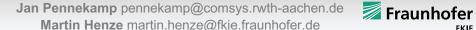
• Can take significant time!

- We operated on real-world data
- Possibly requires access to industrial machines (in production)
- What do the results entail?
 - Consequences for the use case
 - Are they generalizable/universal?
 - Empirical proof is hard to achieve
- Consider safety aspects
 - Of course, also in all other steps

Takeaway:

- Check for real-world applicability
 - Ideally using original data
 - Is the prototype really suitable?
- Highlight and evaluate use caseindependent security contribution
 - Try to generalize as much as you can


Strong privacy is not feasible for certain real-world settings. Thus, we sacrifice some provider privacy for a 2nd universal design.


COM

SYS

Jan Pennekamp pennekamp@comsys.rwth-aachen.de Martin Henze martin.henze@fkie.fraunhofer.de

COM SYS

FKIE

• Research "prototype" only

- Open-sourced and artifacts evaluated
- Trade-off between usability and impact for research needs consideration
 - Especially with practitioners as partners!

Data set-specific challenges

- Remove all critical/leaking aspects
- What about transferability?
 - Other related use cases work differently!

Encourage more work in this area ③

Should be discussed early on

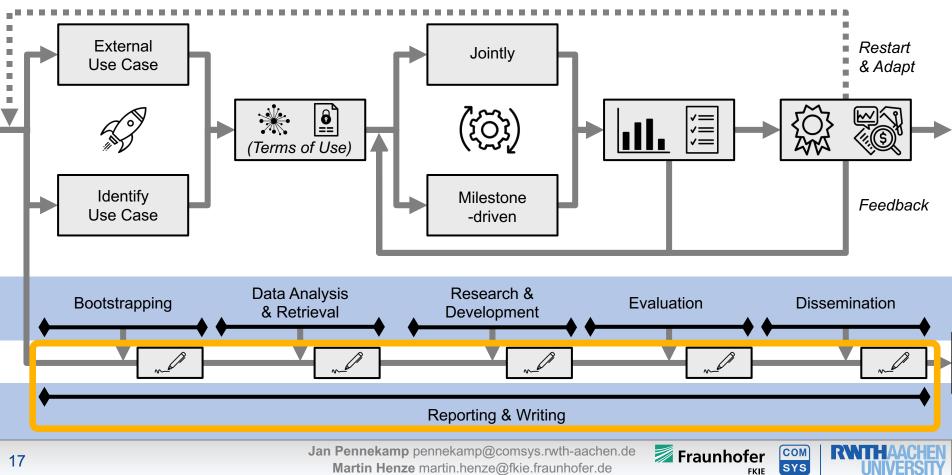
Takeaway:

- Artifacts improve the submission!
- As always, invest as little as possible but as much as needed
- Utilize experience to bootstrap new, more challenging use cases

Fraunhofer

github.com/COMSYS/parameter-exchange

Code + Data is publicly available.


ACSAC

COM

SYS

FKIE

Jan Pennekamp pennekamp@comsys.rwth-aachen.de Martin Henze martin.henze@fkie.fraunhofer.de

Organization is challenging

- Different best practices in place
 - Used tools: LaTeX vs. Word, versioning, ...
- (Re-)Approval can take significant time

• Where to submit?

- Security contribution should be the driver, but partly seen as very applied research
- Identify a suitable community and venue
- Reviewers might not understand the practical impact in the application domain

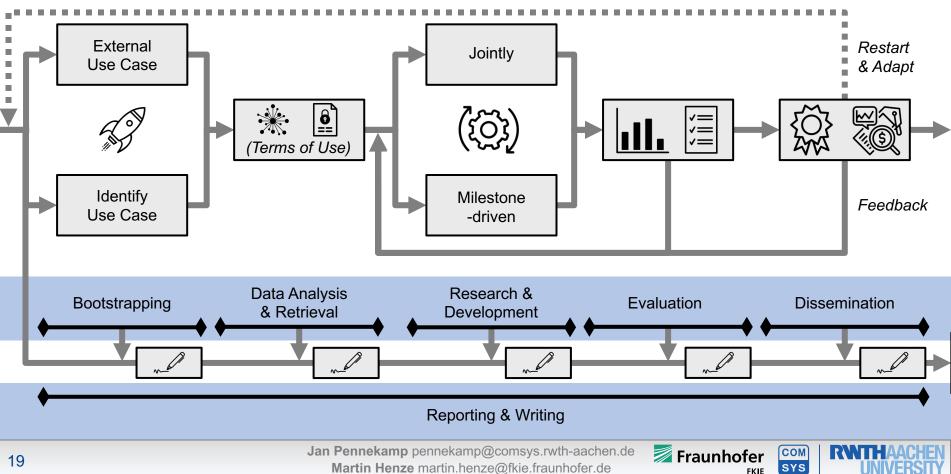
Takeaway:

- Challenging to work in parallel
 - Due to approval and feedback loops

• No last minute changes!

- Prepare yourself (early on)
- Communicate clear expectations
- Consider to submit two papers
 - Focus on individual contributions each

Final publication with 9 authors from 3 departments: Differing publication cultures and expectations.


COM

SYS

The Complete Process Cycle of Applied Security Research

Martin Henze martin.henze@fkie.fraunhofer.de

FKIE

• Communication is key

Questions so far?

- Implicit assumptions (e.g., about existing domain knowledge, realizability, and requirements concerning use case data) from both sides
- Might be a sign for "cutting-edge" research

Do not take anything for granted

Wording / notation / terminology might differ between the domains Unfortunately, it is quite challenging to bridge them and it takes time

Re-using datasets and existing artifacts can be challenging

- Mostly little documentation available
- Specific details are missing
- Overall, only few resources exist

Progress in *secure* industrial collaboration is achievable by carefully bridging the domains

Jan Pennekamp pennekamp@comsys.rwth-aachen.de Martin Henze martin.henze@fkie.fraunhofer.de

COM

SYS

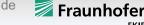
- Do you consider security research for industrial collaborations worthwhile?
- Are you interested in collaborating on real-world use cases, or are the interdisciplinary challenges and domain differences not worth the effort?
- Are we missing any fundamental (yet trivial?) steps in our process cycle?
- Did you ever experience the challenge to identify a fitting community or to find a venue for your (interdisciplinary) work?
- What is your take on non-disclosure agreements in research?

COM

SYS

Conclusion

Next steps


- Getting the currently unpublished papers published ©
- Looking for additional feedback from YOU

Post-workshop paper

- ► A more detailed description of our "findings" and the individual steps
 - Underlined with multiple real-world examples / collaborations
- Integrating input from one or multiple collaborators (considering their applied views)
- Potentially integrate the needs of RDM (research data management) concerning the intersection of security research and applied industry use cases

Thank you for your attention!

Jan Pennekamp pennekamp@comsys.rwth-aachen.de Martin Henze martin.henze@fkie.fraunhofer.de

Are YOU

willing to

contribute?

COM

SYS

FKIE