
Poster: Guide Me to Exploit: Assisted ROP Exploit
Generation for ActionScript Virtual Machine

Fadi Yilmaz, Meera Sridhar, and Wontae Choi

Learning from Authoritative Security Experiment Results (LASER) 2020
Part II

December 8, 2020, Online

presented by
Fadi Yilmaz

1

Work supported in part by National Science Foundation Grant No. 1566321

Motivation of Automated Exploit Generation (AEG)

• Monitoring the execution of exploit scripts is crucial

• Underlying weaknesses of target applications
• Unorthodox methods to exploit vulnerabilities

2

AEG

• Determining the exploitability [Younis et al. SQJ’16]

• Explores all possible execution paths [Avgerinos et al.
NDSS’11]

.

.

.

.

.

.

Vulnerability

State

𝑛1

Level 1 Level 2

𝑛2,1

𝑛2,2

𝑛2,𝑛1

. . .
.
.
.

Level 𝑘

. . .

Level 𝑘 + 1 Level 𝑟

. . .Exploit State

3

...

...

...

...
...

...

...

.

.

.

...

...

...
Exploit State

..

.

• Fuzzer [Miller et al. ACM’90, Jayaraman et al. NFM’09, Rawat

et al. NDSS’17]

• Explores only one execution path in one run

.

.

.

.

.

.

Vulnerability

State

𝑛1

Level 1 Level 2

𝑛2,1

𝑛2,2

𝑛2,𝑛1

. . .
.
.
.

Level 𝑘

. . .

Level 𝑘 + 1 Level 𝑟

. . .Exploit State

4

...

...

...

...
...

...

...

.

.

.

...

...

...
Exploit State

..

.

AEG Components

• Fuzzer

• Explores only one execution path in one run

.

.

.

.

.

.

Vulnerability

State

𝑛1

Level 1 Level 2

𝑛2,1

𝑛2,2

𝑛2,𝑛1

. . .
.
.
.

Level 𝑘

. . .

..

Level 𝑘 + 1 Level 𝑟

. . .Exploit State

5

...

...

...

...
...

...

...
.

.

.

.

...

...

...
Exploit State

AEG Components

• Symbolic Execution [King et al. ACM’76]

• Explores all execution paths symbolically in one
run

.

.

.

.

.

.

Vulnerability

State

𝑛1

Level 1 Level 2

𝑛2,1

𝑛2,2

𝑛2,𝑛1

. . .
.
.
.

Level 𝑘

. . .

Level 𝑘 + 1 Level 𝑟

. . .Exploit State

6

...

...

...

...
...

...

...

.

.

.

...

...

...
Exploit State

..

.

AEG Components

• Symbolic Execution
• Explores all execution paths symbolically in one

run

.

.

.

.

.

.

Vulnerability

State

𝑛1

Level 1 Level 2

𝑛2,1

𝑛2,2

𝑛2,𝑛1

. . .
.
.
.

Level 𝑘

. . .

Level 𝑘 + 1 Level 𝑟

. . .Exploit State

7

...

...

...

...
...

...

...

.

.

.

...

...

...
Exploit State

..

.

AEG Components

• Symbolic Execution
• Explores all execution paths symbolically in one

run

.

.

.

.

.

.

Vulnerability

State

𝑛1

Level 1 Level 2

𝑛2,1

𝑛2,2

𝑛2,𝑛1

. . .
.
.
.

Level 𝑘

. . .

Level 𝑘 + 1 Level 𝑟

. . .Exploit State

8

...
...

...

...

...

.

.

.

...

...

...
Exploit State

..

.

...

...

AEG Components

• Symbolic Execution
• Explores all execution paths symbolically in one

run

.

.

.

.

.

.

Vulnerability

State

𝑛1

Level 1 Level 2

𝑛2,1

𝑛2,2

𝑛2,𝑛1

. . .
.
.
.

Level 𝑘

. . .

Level 𝑘 + 1 Level 𝑟

. . .Exploit State

9

...
...

.

.

.

...

...

...
Exploit State

..

.

...

...
...

...

...

AEG Components

• Symbolic Execution
• Explores all execution paths symbolically in one

run

.

.

.

.

.

.

Vulnerability

State

𝑛1

Level 1 Level 2

𝑛2,1

𝑛2,2

𝑛2,𝑛1

. . .
.
.
.

Level 𝑘

. . .

Level 𝑘 + 1 Level 𝑟

. . .Exploit State

10

...

.

.

.

...

...

...
Exploit State

...

...
...

...

...

...

...

AEG Components

11

AEG Components

Fuzzer
Symbolic
Execution

+pros +pros

-cons -cons

The path-explosion
problem

Complex grammar rules
for executables

Infinitesimal chance

Fast, easy to build Explores all execution
paths in one run

GUIDEXP : A Prototype Semi-Automatic AEG Tool

• The first guided (semi-automatic) exploit generation tool for
the AVM implementations

• Does not rely on a fuzzer or a symbolic execution tool

12

Intuition Behind Target Exploit
Generation

• Structure of our target exploit

• Exploit pattern

13

Exploit Subgoals

• A search space

• Set of instructions

• An invariant

• The test

14

Experimental Results -I

• The difference is due to starting/closing of the Flash Player

• It takes 85ms on average, equivalent to 89% of the time

15

Experiment

• Generating exploit scripts for different vulnerabilities
with the closed-source debugger

16

Experimental Results -II

• Generating exploit scripts for different vulnerabilities
with the closed-source debugger

17

Experimental Setup
18

• Focus

• General numbers

• Applicability of the tool

• Goal

• To demonstrate that our tool is actually useful

Experimental Setup – Cont.
19

• Two set of experiments

• Executing candidate slices with open-source AVM

• Executing candidate slices with closed-source AVM

Experimental Setup – Cont.
20

• Used artifacts

• The golden example

• The only vulnerability in the open-source AVM

• To explain difference between targeting open-source and

closed-source AVM

• Eleven vulnerabilities collected for a closed-source AVM

• Includes the golden example

Execution Flow Recap
21

Code Generator

Synthesizes

AST

Search Space
Candidate Slice

Merges

Invariant Validator

Ins: [208, 197, 65, 55,
45,103]

Para: [0, 1, 2, 3, 4]

Invariant

Executes

Open-source
AVM

Result

Execution Flow Recap – Cont.
22

Code Generator

Synthesizes

AST

Search Space
Candidate Slice

Merges

Invariant Validator

Invariant

Executes

Open-source
AVM

Result

• Candidate slices are written
into the file system

• AVM Core is invoked and
reads a candidate slice from
the file system

• The result is written into a
file system and read from
the file system

Execution Flow Recap – Cont.
23

Code Generator

Synthesizes

AST

Search Space
Candidate Slice

Merges

Invariant Validator

Invariant

Executes

Closed-source
AVM

Result

• Candidate slices are written
into the file system

• AVM Core is invoked and
reads a candidate slice from
the file system

• The result is written into a
file system and read from
the file system

Initial Development
24

• Measure the initial performance

• Memory

• Running time

• Interaction Cost

• To get something fast and lean enough to be used

Initial Development
25

• Used Artifact

• The golden example

• A single vulnerability from an open-source AVM

• CVE-2015-5119

• Details are in our paper

• Real example

• Not too complicated

• Still not too simple

Development Cycle
26

• Implement a prototype

• Run it on the benchmark

• Evaluate the numbers

• Identify bottlenecks

• Optimize

• Go back to step (1)

Development Cycle -I
27

• Everything was written into HDD

• Huge bottleneck

• This is not a part of our algorithm!

• Easy to solve!

• Ask for an SSD!

• Not good enough

• Use VM

Development Cycle -II
28

• The number of execution paths to explore is too big!

• Solution

• Adding search space limitation

Development Cycle -III
29

• The search may last infinite

• Tested various search target prioritization techniques

(DFS or BFS or Random)

• Final decision: BFS

• Level is limited

Development Cycle -IV
30

• The search still takes too much time

• Number of candidate slice is more than billions

• Optimize

• Lots of type errors happened

• Feedback optimization

• Stack simulation

• Tiling

Initial Development – The Bottom Line
31

• Golden Example

• Good Part

• Iterate extremely fast

• Identify all the small details of algorithms and artifacts

• Danger

• Development can be biased

• Mitigation

• Use more than one golden example

Actual Evaluation
32

• What we did

• Applied our technique to all these examples

• Showed that everything passes

• What we observed

• Not biased with golden example

• Performance of our tool with closed-source VM is

not as good as it is with open-source VM

Actual Evaluation – The Bottom Line
33

• We were lucky that we started with a vulnerability in an

open-source VM

• With a closed-source VM, our initial development

process could be infeasible

• Generalizing different configurations can be challenging

Manual Intervention
34

• Evaluating manual intervention is not in our focus

• Our focus is to move from “unable” to “able”

• This is the future work!

Artifacts Borrowed from the Community
35

• Synthesizes a ROP exploit for given AVM vulnerabilities

• AVM vulnerabilities

• Exploit databases

• exploit-db.com

• Google’s Project Zero*

• Tech Reports

• We synthesized different exploits

*https://bugs.chromium.org/

Artifacts Borrowed from the Community
36

• Synthesizes a ROP exploit for given AVM vulnerabilities

• ROP chain

• ROPgadget*

• Locates and build the ROP chain

• Execute ‘int 0x80’

• We copied the idea

*Jonathan Salwan - https://github.com/JonathanSalwan/ROPgadget

Intermediate Results
37

• Development Cycle

• Many iterations

• Many results

• Gradually getting faster tool

• Start with months

• Down to 15 minutes

Intermediate Results - Optimizations
38

• Multi-threading

• Three threads

• From months to weeks

• Stack Simulation

• Almost hundred times faster

• From weeks to hours

Intermediate Results - Optimizations
39

*https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/runtimeErrors.html/

• Run-time Errors

• From hours to minutes

• There are thousands of different run-time error

messages*

• Not all of them is raised

• Not all of them is useful

What can be learned from your
methodology and your experience

using your methodology?

40

Any Failed Attempts
41

• Not really

• Aimed to implement more powerful system

• More optimization techniques

Did you attempt to replicate or
reproduce results of earlier research as

part of your work?

42

Future Works
43

• Need to measure

• How much human interaction is required

• How much human expertise is required

• Can a newbie use the tool?

• How much effort does our tool save for a seasoned

developer

Future Works
44

• User-study

• Two dimensions of expertise

• Exploits

• ActionScript language

• Three level of expertise

• Newbie

• Intermediate

• Seasoned

Thank You

Fadi Yilmaz
UNC Charlotte
fyilmaz@uncc.edu

Meera Sridhar
UNC Charlotte
msridhar@uncc.edu

Wontae Choi
wtchoi.kr@gmail.com

45

Key References
46

[Younis et al. SQJ’16] Awad Younis, Yashwant K Malaiya, and Indrajit Ray.
2016. Assessing vulnerability exploitability risk using software properties.
Software Quality Journal 24, 1 (2016), 159–202.

[Avgerinos et al. NDSS’11] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze
Hao, and David Brumley. 2011. AEG: Automatic Exploit Generation. In
Proceedings of The Network and Distributed System Security Symposium
(NDSS).

[Miller et al. ACM’90] Barton P Miller, Louis Fredriksen, and Bryan So. 1990.
An empirical study of the reliability of UNIX utilities. Commun. ACM 33, 12
(1990), 32–44.

[Jayaraman et al. NFM’09] Karthick Jayaraman, David Harvison, and Adam
Kiezun Vijay Ganesh. 2009. jFuzz: A concolic whitebox fuzzer for Java. In
Proceedings of the First NASA Formal Methods Symposium (NFM).

[Rawat et al. NDSS’17] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian
Cojocar, Cristiano Giuffrida, and Herbert Bos. 2017. VUzzer: Application-
aware Evolutionary Fuzzing. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), Vol. 17. 1–14.

