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Motivation of Automated Exploit Generation (AEG)

• Monitoring the execution of exploit scripts is crucial

• Underlying weaknesses of target applications
• Unorthodox methods to exploit vulnerabilities
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AEG

• Determining the exploitability [Younis et al. SQJ’16]

• Explores all possible execution paths [Avgerinos et al. 
NDSS’11]
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• Fuzzer [Miller et al. ACM’90, Jayaraman et al. NFM’09, Rawat 

et al. NDSS’17]

• Explores only one execution path in one run
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• Symbolic Execution [King et al. ACM’76]

• Explores all execution paths symbolically in one 
run

.

.

.

.

.

.

Vulnerability 

State

𝑛1

Level 1 Level 2

𝑛2,1

𝑛2,2

𝑛2,𝑛1

. . .
.
.
.

Level 𝑘

. . .

Level 𝑘 + 1 Level 𝑟

. . .Exploit State

6

...

...

...

...
...

...

...

.

.

.

...

...

...
Exploit State

..

.

AEG Components



• Symbolic Execution
• Explores all execution paths symbolically in one 

run
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AEG Components

Fuzzer
Symbolic 
Execution

+pros +pros

-cons -cons

The path-explosion 
problem

Complex grammar rules 
for executables 

Infinitesimal chance

Fast, easy to build Explores all execution 
paths in one run



GUIDEXP : A Prototype Semi-Automatic AEG Tool

• The first guided (semi-automatic) exploit generation tool for 
the AVM implementations

• Does not rely on a fuzzer or a symbolic execution tool
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Intuition Behind Target Exploit 
Generation

• Structure of our target exploit

• Exploit pattern
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Exploit Subgoals

• A search space

• Set of instructions

• An invariant

• The test
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Experimental Results -I

• The difference is due to starting/closing of the Flash Player

• It takes 85ms on average, equivalent to 89% of the time
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Experiment

• Generating exploit scripts for different vulnerabilities 
with the closed-source debugger
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Experimental Results -II

• Generating exploit scripts for different vulnerabilities 
with the closed-source debugger
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Experimental Setup
18

• Focus

• General numbers 

• Applicability of the tool

• Goal

• To demonstrate that our tool is actually useful



Experimental Setup – Cont.
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• Two set of experiments

• Executing candidate slices with open-source AVM

• Executing candidate slices with closed-source AVM



Experimental Setup – Cont.
20

• Used artifacts

• The golden example 

• The only vulnerability in the open-source AVM

• To explain difference between targeting open-source and 

closed-source AVM

• Eleven vulnerabilities collected for a closed-source AVM

• Includes the golden example



Execution Flow Recap 
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Code Generator

Synthesizes

AST

Search Space
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Merges

Invariant Validator

Ins: [208, 197, 65, 55, 
45,103] 

Para: [0, 1, 2, 3, 4]

Invariant

Executes

Open-source 
AVM

Result



Execution Flow Recap – Cont. 
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Execution Flow Recap – Cont. 
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Initial Development
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• Measure the initial performance

• Memory

• Running time

• Interaction Cost

• To get something fast and lean enough to be used



Initial Development
25

• Used Artifact

• The golden example

• A single vulnerability from an open-source AVM

• CVE-2015-5119

• Details are in our paper

• Real example

• Not too complicated

• Still not too simple



Development Cycle
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• Implement a prototype

• Run it on the benchmark

• Evaluate the numbers

• Identify bottlenecks

• Optimize

• Go back to step (1)



Development Cycle -I
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• Everything was written into HDD

• Huge bottleneck

• This is not a part of our algorithm!

• Easy to solve! 

• Ask for an SSD!

• Not good enough

• Use VM



Development Cycle -II
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• The number of execution paths to explore is too big!

• Solution

• Adding search space limitation



Development Cycle -III
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• The search may last infinite

• Tested various search target prioritization techniques 

(DFS or BFS or Random)  

• Final decision: BFS 

• Level is limited



Development Cycle -IV
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• The search still takes too much time

• Number of candidate slice is more than billions

• Optimize

• Lots of type errors happened

• Feedback optimization

• Stack simulation

• Tiling



Initial Development – The Bottom Line
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• Golden Example

• Good Part

• Iterate extremely fast

• Identify all the small details of algorithms and artifacts 

• Danger

• Development can be biased 

• Mitigation

• Use more than one golden example



Actual Evaluation
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• What we did

• Applied our technique to all these examples

• Showed that everything passes

• What we observed

• Not biased with golden example

• Performance of our tool with closed-source VM is 

not as good as it is with open-source VM



Actual Evaluation – The Bottom Line
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• We were lucky that we started with a vulnerability in an 

open-source VM

• With a closed-source VM, our initial development 

process could be infeasible

• Generalizing different configurations can be challenging



Manual Intervention
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• Evaluating manual intervention is not in our focus

• Our focus is to move from “unable” to “able”

• This is the future work!



Artifacts Borrowed from the Community
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• Synthesizes a ROP exploit for given AVM vulnerabilities

• AVM vulnerabilities

• Exploit databases

• exploit-db.com

• Google’s Project Zero*

• Tech Reports

• We synthesized different exploits

*https://bugs.chromium.org/



Artifacts Borrowed from the Community
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• Synthesizes a ROP exploit for given AVM vulnerabilities

• ROP chain

• ROPgadget*

• Locates and build the ROP chain

• Execute ‘int 0x80’

• We copied the idea 

*Jonathan Salwan - https://github.com/JonathanSalwan/ROPgadget



Intermediate Results
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• Development Cycle

• Many iterations

• Many results

• Gradually getting faster tool

• Start with months 

• Down to 15 minutes



Intermediate Results - Optimizations
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• Multi-threading

• Three threads 

• From months to weeks

• Stack Simulation

• Almost hundred times faster

• From weeks to hours



Intermediate Results - Optimizations
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*https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/runtimeErrors.html/

• Run-time Errors

• From hours to minutes

• There are thousands of different run-time error 

messages*

• Not all of them is raised

• Not all of them is useful



What can be learned from your 
methodology and your experience 

using your methodology? 
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Any Failed Attempts
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• Not really

• Aimed to implement more powerful system

• More optimization techniques



Did you attempt to replicate or 
reproduce results of earlier research as 

part of your work?
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Future Works
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• Need to measure 

• How much human interaction is required

• How much human expertise is required

• Can a newbie use the tool?

• How much effort does our tool save for a seasoned 

developer



Future Works
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• User-study

• Two dimensions of expertise

• Exploits

• ActionScript language

• Three level of expertise

• Newbie

• Intermediate

• Seasoned
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