
Session Key Distribution Made Practical for CAN and CAN-FD
Message Authentication — Lessons Learned from Experiment

Presenter: Yang Xiao <xiaoy@vt.edu>

Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, Y. Thomas Hou

The LASER Workshop

◼ Automotive Communication Networks
◼ For in-vehicle communication between Electronic Control Units (ECUs)

◼ Controller Area Network (CAN bus)
◼ Used for the control of powertrain or other safety-critical subsystems

◼ Extension: CAN Flexible Data-rate (CAN FD)

Controller Area Network (CAN)

Image source: https://www.renesas.com/us/en/solutions/automotive/technology/networking-solutions.html

◼ Broadcast-and-Subscribe Messaging Paradigm
◼ Only message ID, no sender or receiver ID

◼ Physical Layer
◼ CAN: fixed data rate

◼ CAN FD: flexible data rate for data + CRC fields

Basics of CAN and CAN FD Messaging

Image credit: https://en.wikipedia.org/wiki/CAN_bus

CAN/CAN FD Data Frame Format CAN/CAN FD Node Architecture

ECU-Message ID Subscription Example

ECU1

ECU2 ECU3

MID1
MID2

Attack on Vehicles

◼ Gain Access to Internal Control of Vehicle
◼ Through the OBD-II port or exposed wired/wireless interfaces

◼ → Eavesdrop

◼ → Spoof messages to critical ECUs

◼ → Knocking a ECU offline

◼ Root Cause
◼ No security mechanism built in the communication protocol

◼ “Security by obscurity” is no longer safe for in-car systems

OBD-II port

https://www.vice.com/en/article/zmpx4x/hacker-monitor-cars-kill-engine-gps-tracking-apps
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/

◼ Security Goal Specified in AUTOSAR-SecOC
◼ ECU entity authentication

◼ Message authentication

◼ Freshness – for replay attack resistance

◼ Each message ID is assigned a MAC key

◼ Cryptography (symmetric)

◼ 128-bit keys

◼ 64-bit MACs

◼ What is Missing – Specification on Session Key Establishment for MAC Purposes
◼ Critical to real-world deployment

◼ → Goal of this work

AUTOSAR Specifications on Secure Communication

Message authentication with freshness verification [SecOC 4.2.2]

[SecOC 4.2.2] AUTOSAR, “AUTOSAR release 4.2.2: Specification of module secure onboard communication,” 2017

On Key Management and Establishment

Security Goal:

One Key for All

Auth. to send

One

One Key for Each MSG ID

Auth. to send a
specific message

of MSG subscribed

ECU-pairwise Keys

Entity auth.

ECU populationSession Key Storage per ECU:

MSG2 MSG1

Key Establishment
Styles
[Communication
Complexity]

Key
Agreement:

High High High

Key
Derivation:

Low Low Low

Key
Distribution:

Low Medium High

AUTOSAR Compliant

(Msg-specific LT
keys needed)

(No LT key
needed)

(ECU-specific LT
keys needed)

Our proposal
fits here

◼ System Model
◼ 𝑁 ECUs, 𝑀 message IDs

◼ ECU 𝑖 has a Subscription List (𝐒𝐋𝑖) of message IDs

◼ Goal: All ECUs subscribing message 𝑗 shall get a shared session key 𝑠𝑘𝑗

◼ Threat Model
◼ Message eavesdropping, tampering, spoofing and replaying in the bus

◼ Practical Requirements for Key Establishment
◼ R1: Lightweight Computation and Storage

◼ R2: Communication Efficiency

◼ R3: AUTOSAR-compliant Security

◼ R4: Flexibility with On-demand ECU

Our Proposed Key Management Architecture

Key Establishment

Key
Distribution

ECU1

ECU2 ECU3

MSG1
MSG2

𝑠𝑘2 𝑠𝑘1

Our Proposed Key Management Architecture

◼ Key Server (KS)
◼ Shares a long-term key 𝑒𝑘𝑖 with every ECU 𝑖

◼ To generate 128-bit session keys 𝑠𝑘1, … , 𝑠𝑘𝑀
◼ To maintain the 64-bit system epoch 𝑒

◼ Key Distribution Protocols

Example:
ECU 1, 2, 3 subscribe msg 1
ECU 1, 2 subscribes msg 2

KDC
(Key Distribution

Center)

SKT
(Secret-sharing-based

Key Transfer)

SKDC Protocol SSKT Protocol

Baseline Novel Scheme
(for better communication efficiency)

Adapted for
session key

distribution in
CAN/CAN-FD:

Primitives:

Protocol Workflow, Experiment and Evaluation

◼ Highlights
◼ KS uses 𝑒𝑘𝑖 as key-encryption key (KEK) to encrypt each session key to each ECU 𝑖

◼ Epoch 𝑒 for freshness; MAC for verification

◼ Workflow (Example)

SKDC Protocol (baseline)

ECU 3
𝑆𝐿3 = {𝑀𝐼𝐷1}

ECU 1
𝑆𝐿1 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

ECU 2
𝑆𝐿2 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

Phase 1:
Key Generation

𝑠𝑘1 𝑠𝑘2

KS

SKDC Protocol Message Formats

(by on-demand ECU)

◼ Highlights
◼ KS uses 𝑒𝑘𝑖 as key-encryption key (KEK) to encrypt each session key to each ECU 𝑖

◼ Epoch 𝑒 for freshness; MAC for verification

◼ Workflow (Example)

SKDC Protocol (baseline)

ECU 3
𝑆𝐿3 = {𝑀𝐼𝐷1}

ECU 1
𝑆𝐿1 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

ECU 2
𝑆𝐿2 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

KD_MSG(1,1, 𝑒) KD_MSG(2,1, 𝑒)KD_MSG(1,2, 𝑒)

KD_MSG(2,2, 𝑒)KD_MSG(3,1, 𝑒)

𝑠𝑘2𝑠𝑘1 𝑠𝑘1 𝑠𝑘2

𝑠𝑘1

𝑠𝑘1 𝑠𝑘2

Decrypt & Verify Decrypt & Verify

Decrypt & Verify

KS

SKDC Protocol Message Formats

(by on-demand ECU)

Phase 2:
Key Delivery

◼ Highlights
◼ KS uses 𝑒𝑘𝑖 as key-encryption key (KEK) to encrypt each session key to each ECU 𝑖

◼ Epoch 𝑒 for freshness; MAC for verification

◼ Workflow (Example)

SKDC Protocol (baseline)

ECU 3
𝑆𝐿3 = {𝑀𝐼𝐷1}

ECU 1
𝑆𝐿1 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

ECU 2
𝑆𝐿2 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

𝑠𝑘2𝑠𝑘1 𝑠𝑘1 𝑠𝑘2

𝑠𝑘1

𝑠𝑘1 𝑠𝑘2

CO_MSG(3)

CO_MSG(2)CO_MSG(1)

Verify

Turn on vehicle

KS

SKDC Protocol Message Formats

(by on-demand ECU)

- Protocol message is sent in separate
CAN/CAN-FD frames if payload exceeds
frame limit.

- On-demand ECU sends RE_MSG during
driving for requesting session keys.

Phase 3:
Confirmation

◼ Highlights
◼ Long-term key pair 𝑒𝑘𝑖 = (𝑥𝑖 , 𝑦𝑖)

◼ ECU recovers session key segments by Lagrange polynomial

interpolation in 𝐺𝐹(256)

◼ Workflow (Example)

SSKT Workflow

ECU 3
𝑆𝐿3 = {𝑀𝐼𝐷1}

ECU 1
𝑆𝐿1 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

ECU 2
𝑆𝐿2 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

Phase 1:
Key Generation

𝑠𝑘1 𝑠𝑘2

KS

SKDC Protocol Message Formats

(by on-demand
ECU)

◼ Highlights
◼ Long-term key pair 𝑒𝑘𝑖 = (𝑥𝑖 , 𝑦𝑖)

◼ ECU recovers session key segments by Lagrange polynomial

interpolation in 𝐺𝐹(256)

◼ Workflow (Example)

SSKT Workflow

ECU 3
𝑆𝐿3 = {𝑀𝐼𝐷1}

ECU 1
𝑆𝐿1 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

ECU 2
𝑆𝐿2 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

Phase 2:
Preparation

PR_MSG(1, 𝑒)

KS

SKDC Protocol Message Formats

(by on-demand
ECU)

𝑅1 𝑅2

𝑅3

PR_MSG(3, 𝑒)

PR_MSG(2, 𝑒)

Derive 𝑅1
1, 𝑅1

2

from 𝑅1

Derive 𝑅2
1, 𝑅2

2

from 𝑅2

Derive 𝑅3
1

from 𝑅3

Randomize
𝑅1,𝑅2,𝑅3

◼ Highlights
◼ Long-term key pair 𝑒𝑘𝑖 = (𝑥𝑖 , 𝑦𝑖)

◼ ECU recovers session key segments by Lagrange polynomial

interpolation in 𝐺𝐹(256)

◼ Workflow (Example)

SSKT Workflow

ECU 3
𝑆𝐿3 = {𝑀𝐼𝐷1}

ECU 1
𝑆𝐿1 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

ECU 2
𝑆𝐿2 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

KD_MSG(1, 𝑒) KD_MSG(1, 𝑒)KD_MSG(2, 𝑒)

KD_MSG(2, 𝑒)KD_MSG(1, 𝑒)

𝑠𝑘2𝑠𝑘1 𝑠𝑘1𝑠𝑘2

𝑠𝑘1

Phase 3:
Key Delivery

𝑠𝑘1 𝑠𝑘2

Comp.

KS

SKDC Protocol Message Formats

(by on-demand
ECU)

Comp.

Comp.

ECU 𝑖 upon receiving KD_MSG(2, 𝑒):

For 𝑏 = 1 → 16, interpolate 𝑓𝑏
𝑗
(0):

Then 𝑠𝑘𝑗 = 𝑓1
𝑗
0 || … ||𝑓16

𝑗
(0)

& verify with MAC

𝑓𝑏
𝑗
(0)

local secret

(𝑥𝑖 𝑏 , 𝑦𝑡 𝑏 ⊕ 𝑅𝑖 𝑏
𝑗

)

𝐺
𝐹
(2
5
6
)

𝐺𝐹(256)

Generate
polynomials &
aux. y-coord.

𝑅3
1

𝑅1
1, 𝑅1

2 𝑅2
1, 𝑅2

2

𝑡𝑗 auxiliary y-coordinates

◼ Highlights
◼ Long-term key pair 𝑒𝑘𝑖 = (𝑥𝑖 , 𝑦𝑖)

◼ ECU recovers session key segments by Lagrange polynomial

interpolation in 𝐺𝐹(256)

◼ Workflow (Example)

SSKT Workflow

ECU 3
𝑆𝐿3 = {𝑀𝐼𝐷1}

ECU 1
𝑆𝐿1 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

ECU 2
𝑆𝐿2 = {𝑀𝐼𝐷1, 𝑀𝐼𝐷2}

𝑠𝑘2𝑠𝑘1 𝑠𝑘1 𝑠𝑘2

𝑠𝑘1

𝑠𝑘1 𝑠𝑘2

CO_MSG(3)

CO_MSG(2)CO_MSG(1)

Verify

Turn on vehicle

KS

SKDC Protocol Message Formats

(by on-demand
ECU)

Phase 4:
Confirmation

𝑅3
1

𝑅1
1, 𝑅1

2 𝑅2
1, 𝑅2

2

- Protocol message is sent in separate
CAN/CAN-FD frames if payload
exceeds frame limit.

- On-demand ECU sends RE_MSG
during driving for requesting session
keys (same as SKDC).

Implementation for CAN Bus Deployment

◼ Keyserver and node Programs
◼ Arduino IDE (C++)

◼ Third-party libraries used
◼ Arduino Cryptography Library

(rweather.github.io/arduinolibs/crypto.html)

◼ Seeed Studio CAN Bus Shield
(github.com/Seeed-Studio/CAN_BUS_Shield)

Code:
github.com/yang-sec/CAN-SessionKey

https://rweather.github.io/arduinolibs/crypto.html
https://github.com/Seeed-Studio/CAN_BUS_Shield
https://www.acsac.org/2020/program/artifacts/
https://github.com/yang-sec/CAN-SessionKey

◼ Setup
◼ 𝑁 ∈ {1,2,3,4,5,6} ECUs, each subscribes to all 𝑀 ∈ {1,6} MIDs

◼ Data collected using serial terminals of Arduino IDE

Test Platform with CAN Bus

Seeedudio
CAN shield

Arduino UNO R3
(8-bit, 16MHz)

CAN ECU Node 1

Arduino Due A000062
(32-bit, 84MHz)

120Ω
resistor

Key Server

CAN ECU
Node 2

120Ω
resistor

. . . CAN ECU
Node 6

Seeedudio
CAN shield

Arduino IDE

Hardware Experiment Result

SSKT’s advantage will continue scaling up
for larger M and N, contributed by its
better communication efficiency in the
key delivery phase.

Capped by N=5 due to Uno’s RAM limit

◼ Runtime Results for Distributed One Session Key (ms)

◼ Single-operation Runtimes
◼ Evaluated on normal ECU (not KS)

◼ Used both Uno and Due for benchmarking

◼ Extrapolated ECU Computation Workload per Protocol Session

Performance Extrapolation – Computation Workload

SSKT achieves better computation
efficiency for larger 𝑀.
Tradeoff: RAM cost.

Arduino Uno as ECU Arduino Due as ECU

◼ Extrapolated Communication
Overhead per Protocol Session
◼ Assume CAN bit rate is 500Kbs

Performance Extrapolation – Communication Overhead

◼ Protocol Message Count
per Protocol Session
◼ Assume CAN-FD bit rate is 5

times of CAN’s

SSKT achieves better communication efficiency.

Discussions & Meta Questions

◼ Benchmarking

Experimentation Methodology

◼ Hardware Testbed Experiment

Arduino IDE

◼ Extrapolation
Analysis

Experimentation Artifacts Usage

◼ Standard Cryptography
◼ Arduino Cryptography Library (rweather.github.io/arduinolibs/crypto.html)

◼ For lightweight embedded systems

◼ CAN Bus Functionalities
◼ Seeed Studio CAN Bus Shield (github.com/Seeed-Studio/CAN_BUS_Shield)

Seeed Studio
CAN shield

Arduino UNO R3
(8-bit, 16MHz)

https://rweather.github.io/arduinolibs/crypto.html
https://github.com/Seeed-Studio/CAN_BUS_Shield

Setbacks and Challenges Encountered in HW Experiment

◼ Unstable Arduino board performance
◼ SRAM limits: 2MB in Arduino Uno

◼ Loss of CAN messages
◼ When multiple messages are received –

caused by limited buffer size

◼ An intrisic CAN messaging problem

◼ Solution: tweaking protocol message
timing (tricky business)

Tradeoff in Implementation (Standard Crypto)

◼ Benchmarks from Arduino Cryptography Library, on Arduino Uno

Encryption
Algorithm

Encryption
(per byte)

Decryption
(per byte)

Key Setup State Size
(bytes)

AES128 33.28us 63.18us 158.68us 181

AESSmall128 40.37us 71.36us 134.22us 34

AESTiny128 40.37us 10.16us 18

Hash Algorithm Hashing
(per byte)

Finalization Key Setup State Size
(bytes)

SHA256 (HMAC) 43.85us 8552.61us 2836.49us 107

SHA3-256 60.69us 8180.24us 205

BLAKE2s (keyed) 20.65us 1335.25us 1339.51us 107

Tradeoff in Implementation (Finite Field Arithmetic)

◼ Optimization for SSKT
◼ Can we speed up polynomial interpolation?

◼ → Yes but at a cost – trade space for time

◼ Three 16×16 lookup tables for 𝐺𝐹(256) arithmetic (784 bytes)
◼ Inverse table

◼ Exponentiation table and logarithm table (for realizing multiplication)

◼ Pre-computing Lagrange coefficients (16N bytes)

◼ 𝑓𝑏
𝑗
0 = σ

𝑚=1

𝑡𝑗+1 𝑣𝑚 ς
𝑛=1,𝑛≠𝑚

𝑡𝑗+1 𝑢𝑛

𝑢𝑛−𝑢𝑚

◼ Previous attempt – using one Arduino
board to simulate multiple ECUs
◼ Leaded to erroneous result!

Previous Unanticipated Results

VS

Protocol runtime (ms) – previous result

Protocol runtime (ms) – current result

Artifact Evaluation

◼ Making embedded system accessible for remote users
◼ Good for benchmark evaluations and some simple protocol runes

◼ Still need human intervention in some cases!
◼ So we did a live demonstration…

Arduino IDEssh

https://youtu.be/KDDISrVCJYA

Wrap-up Discussion

Lessons Learned

◼ Hardware limitation → extrapolation from benchmark results

◼ Simulating a hardware environment is full of caveats

◼ Lightweight cryptography matters for cost-efficient embedded systems

◼ Overhead is significant when incepting security mechanisms in a legacy unsecure
system (eg., CAN bus)

Future Directions (research + implementation)

◼ On Performance Bottleneck and Room for Improvement
◼ Compared to computation workload, communication overhead has limited room for improvement

◼ May use other automotive comm. network for evaluation

◼ On Storage and Memory Cost
◼ SSKT achieves superior computation efficiency using pre-computed intermediate results, which

needs SRAM to store

◼ Though SRAM is affordable nowadays, the tradeoff deserves more attention

◼ On System Scalability
◼ 𝐺𝐹(256)-arithmetic caps the network size by 128

◼ To support larger network size, need larger finite fields, eg., 𝐺𝐹(216)

◼ Need more powerful ECUs

◼ Need more efficient implementation of finite field arithmetic & polynomial operation

◼ Evaluation in Realistic Automotive Environment

Thanks!

